Rutgers University: Algebra Written Qualifying Exam August 2014: Problem 1 Solution

Exercise. Let V be a 5-dimensional vector space over \mathbb{C} and let $T: V \to V$ be a linear transformation. Assume that there is $v \in V$ such that $\{v, Tv, T^2v, T^3v, T^4v\}$ spans V. Assume that the set of eigenvalues of T is precisely equal to $\{1, 2\}$. On the basis of this information, how many possible Jordan canonical forms are there for T, and what are they? Justify your answer.

Solution.
Since eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 2$, the Jordan canonical form of T has diagonal entries 1 and 2.
$p(x) = A - xI $ where A is the matrix rep. of T and $k_1 + k_2 = 5$
$= (x-1)^{k_1} (x-2)^{k_2}$
possible char. polynomials:
$(x-1)(x-2)^4$
$(x-1)^2(x-2)^3$
$(x-1)^3(x-2)^2$
$(x-1)^*(x-2)$
Since $\{\vec{v}, T\vec{v}, T^2\vec{v}, T^3\vec{v}, T^4\vec{v}\}$ spans V , for all $a_i \in \mathbb{C}$
$a + T^4 \vec{v} + a_3 T^3 \vec{v} + a_2 T^2 \vec{v} + a_1 T \vec{v} + a_0 \vec{v} = \vec{0} \iff a_0 = a_1 = a_2 = a_3 = a_4 = 0$
If $q_A(x)$ has deg< 5 then
$q_A(x) = b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0 \implies q_A(A) = b_4 A^4 + b_3 A^3 + b_2 A^2 + b_1 A + b_0 = \vec{0}$
$\implies b_4 A^4 \vec{v} + b_3 A^3 \vec{v} + b_2 A^2 \vec{v} + b_1 A \vec{v} + b_0 \vec{v} = \vec{0}$
$\implies b_i = 0$ for all i , a contradiction
So deg $(q_A(x)) = 5$ and $q_A(x) = p_A(x)$ since $q_A(x) \mid p_A(x)$ and they have the same degree and are monic
If $q_A(x) = (x-1)^{d_1}(x-2)^{d_2}$, then the largest Jordan block for eigenvalue $\lambda = 1$ has size d_1 ,
and the largest Jordan block for eigenvalue $\lambda = 2$ has size d_2 \implies since $q_A(x) = p_A(x) = (x-1)^{k_1}(x-2)^{k_2}$,
there is only one Jordan block for $\lambda = 1$ and it has size k_1
and there is only one Jordan block for $\lambda = 2$ and it has size k_2
There are 4 possible Jordan canonical forms for T
$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$
$\begin{bmatrix} 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 & 0 & 2 \end{bmatrix}$